Pathology and Cell Biology
Columbia University Medical Center
United States of America
Dr. Ghabrial earned his Ph.D. at Princeton University in the Department of Molecular Biology in the laboratory of Dr. Trudi Schüpbach. His graduate work focused on the checkpoint-dependent coupling of double stranded DNA break repair during meiosis to the establishment of axial polarity in the fruitfly during oogenesis. Dr. Ghabrial did his postdoctoral work with Dr. Mark Krasnow in the Department of Biochemistry at Stanford University. His postdoctoral work focused on the design and completion of a saturation-scale screen for tube morphogenesis genes required during the development of the tracheal (respiratory) system. Dr. Ghabrial started his own group at the University of Pennsylvania in 2008. His group published studies on the role of the Rab35GAP, Whacked/TBC1D10, in the polarization of seamless tube growth, the role of endocytosis in shaping seamless tubes, and on the role of Drosophila CCM3 and its binding partner Wheezy/GckIII in regulating seamless tube shape. The human ortholog of CCM3 (Cerebral Cavernous Malformations 3) is one of three genes known to be affected in cases of familial cerebral cavernous malformations. Cerebral angiomas are found in as many as 1 in every 200 individuals, and is currently treated by brain surgery. The work of the Ghabrial lab has been supported by grants from the March of Dimes, the American Cancer Society and the NIH. Dr. Ghabrial moved to Columbia in July of 2017 and is currently focusing on the regulation of tube morphogenesis using novel optogenetic tools, as well as the further elaboration of the CCM3/GckIII pathway. Dr. Ghabrial earned his Ph.D. at Princeton University in the Department of Molecular Biology in the laboratory of Dr. Trudi Schüpbach. His graduate work focused on the checkpoint-dependent coupling of double stranded DNA break repair during meiosis to the establishment of axial polarity in the fruitfly during oogenesis. Dr. Ghabrial did his postdoctoral work with Dr. Mark Krasnow in the Department of Biochemistry at Stanford University. His postdoctoral work focused on the design and completion of a saturation-scale screen for tube morphogenesis genes required during the development of the tracheal (respiratory) system. Dr. Ghabrial started his own group at the University of Pennsylvania in 2008. His group published studies on the role of the Rab35GAP, Whacked/TBC1D10, in the polarization of seamless tube growth, the role of endocytosis in shaping seamless tubes, and on the role of Drosophila CCM3 and its binding partner Wheezy/GckIII in regulating seamless tube shape. The human ortholog of CCM3 (Cerebral Cavernous Malformations 3) is one of three genes known to be affected in cases of familial cerebral cavernous malformations. Cerebral angiomas are found in as many as 1 in every 200 individuals, and is currently treated by brain surgery. The work of the Ghabrial lab has been supported by grants from the March of Dimes, the American Cancer Society and the NIH. Dr. Ghabrial moved to Columbia in July of 2017 and is currently focusing on the regulation of tube morphogenesis using novel optogenetic tools, as well as the further elaboration of the CCM3/GckIII pathway.
Pathology and Cell Biology